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SSTs exhibit diurnal variability 

From Ward 2006 

• As far as last century, 

studies have noted ΔT 

between different depths 

in upper few meters over 

course of day 

• ΔT can be on the order 

of 3˚C 

• Presence of diurnal 

warming in certain areas 

can last throughout the 

majority of daylight 

hours. 
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Development of warm 
surface layer 

• Winds are 
relatively calm 
(low mechanical 
turbulence and 
mixing) 

• Ample sunlight 
absorption into 
the ocean 

• Diurnal cycle 
observed using 
model and 
satellite data 
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Modeled SST (red) and SEVIRI SST (blue) 
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Overview of Research 

• Creation of diurnally varying SST dataset using a physical-

empirical hybrid model (2000-2004) 

• Characterization of diurnal warming in regions of the ocean 
o Diurnal streaks 

o Temporal persistence in Tropics vs. Midlatitudes 

• Examine the influence on surface latent and sensible heat 

fluxes over seasonal time scales 

• Analyze sensitivities in model with regard to winds, solar 

radiation at the surface, and precipitation 

• Model evaluation using remotely sensed skin temperature 
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dSST Product 
• POSH – Profiles in Oceanic Surface Heating Model 

o Gentemann et al. (2009) 

o Collection of improvements of TOGA-COARE bulk flux algorithm v2.5 

• Fairall et al. (1996) 

• Calculates diurnal warming in a 1-D model at each hour on 0.25° x 0.25° 
grid 

o Function of bulk SST and accumulated heat/momentum at each time step. 

• Advection is ignored 

• Ice is excluded 

• Variety of diurnal warming models 

o Physically based model that captures diurnal warming will likely increase 
understanding of physical processes of the upper ocean 

• Produced 5 year long dataset (2000-2004) 

o SST and dSST (magnitude) 

o sensible and latent heat flux with and without a diurnally varying SST  

• using BVW model (Bourassa 2006)  
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Input Data 
• POSH needs global continuous time series of hourly data 

o atmospheric bulk variables, radiation, and SSTbulk 

• U10 , V10 , Pressure, T10 , Q10 , SWR, LWR, Precip Rate 

• NASA’s MERRA Reanalysis  

o Provides hourly data on 1/2° x 2/3° grid for entire globe – regridded to 1/4° 

• Bulk SST 

o Need SST closer to SSTfnd (Donlon et. al 2007) unaffected by diurnal heating for 

total effect 

o Reynolds OI daily SST AVHRR-only (Reynolds et al. 2003)  

• 1/4 °x 1/4 ° 

• Uses satellite and in situ measurements for blended product 

• Bias adjusted over seven-day period – eliminates diurnal variability 

o Set to 19 m - theoretical maximum dSST thickness (Gentemann personal 

communication 2011) 
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Scaled dSST 
Wind Speed a 

≤1.5 2 

3 3 

4.5 5 

6 7 

≥7.5 9 

• Diurnal warm 
layer thickness: 

 

• Diurnal warming 
magnitude 

7 

Dissipation coefficients make diurnal 

warm layer “interact” with mixed layer 

and lose heat from bottom DWL 

From Gentemann et al. 2009 

Requires bulk Richardson number = 0.65 
Assuming a linear temperature profile 
Function of accumulated wind stress and 
accumulated heat 

Salinity dependence is not explicit in 
model 
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dSST Subdiurnal Spatial 
Structure 

• Sun synchronous 

• Occur at almost all 

latitudes 

• Reflect current 

meteorological state 

o Cyclones 

o Fair weather 

features 

• Non-linear non-

negligible increase in 

surface heat fluxes 

 
Diurnal warming magnitude (°C) 
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Bimonthly Average dSST 
Jan/Feb Mar/Apr 

May/Jun Jul/Aug 

Sep/Oct Nov/Dec 
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Effect of Potential Biases in 
Winds 

• We can estimate the error associated with biases in the wind 

speed data 
 

• Roberts et al. [2010] 

compared MERRA 

with in situ 

measurements 
o MERRA had positive bias for 

entire distribution of winds 

• Best guess estimate of 

systematic bias in 

winds is 0.69 m/s 
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Effect of Potential Biases in 

Winds cont. 

• Potential biases affect the short-term diurnal warming – 

exceedance curves 

 
 

• Differences are + 
• Increased likelihood of 

dSSTs at all wind speed 
ranges 

• Largest probability increase 
between winds of 2.0 – 2.5 
m/s 
• Lowest wind speed with the 

largest bias correction value 
• Isolated events can be as 

large as 1˚C 
• Bimonthly differences are 

less than 0.06˚C (not 
shown) 
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Time Series of Diurnal 
Cycles 

• Using the best sampled data points on a given day, compare 
modeled SST to SEVIRI SST at each hour 
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Time Series of Diurnal 
Cycles 

• Reynolds SST 
estimates foundation 
temperature 
reasonably well 

• POSH consistently 
overestimates peak 
but dissipates heat 
too quickly for 
smaller peak SST 
o Tuning of dissipation 

coefficients for 
different regions of 
ocean may prove useful 
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Conclusions 
• The diurnal cycle of sea surface temperatures is modeled using Gentemann et 

al.’s POSH model (2009)– a physical-empirical hybrid model based on TOGA-
COARE flux model 
o exponential adjustment to the diurnal warm layer thickness;  

o a function of accumulated wind stress and heat adjusted by dissipation coefficients to 
interact with mixed layer 

• Occurs throughout the world’s ocean  
o except in areas of ice,  

o sometimes in thousand kilometer streaks 

o Non-linearly affects surface fluxes 

• Best guest estimate of bias correction (0.69 m/s) influenced dSST on short 
timescales but less so on semi-seasonal scales 
o Sensitive to bias adjustment at low wind speeds 

• Using regridded SEVIRI SST swath data, selected points based on their 
sampling were selected to use in a comparison under a best case scenario 
approach. 

• The Reynolds SST was representative of a foundation temperature while the 
peaks in POSH were consistently overestimated 
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Future Work 
• Couple diurnally varying SSTs to boundary 

layer model 

• Input from satellite winds, SSTs 

• Varying surface fluxes 

• Potentially with HYCOM 

• Examine effects 

• Divergence, wind feedbacks on SST 
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Questions? 
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Back up slides 
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Comparison of Modeled 
Diurnal Cycle to 
Measurements 

• Want an initial assessment of 
how well POSH represents 
the diurnal cycle of global 
SSTs 

• Perform a case study 
o Using IFREMER’s MSG/SEVIRI 

hourly skin SST swath data 

• One of the newer 
instruments; has already been 
shown to observe diurnal 
cycle (Le Borgne et al., 
2012) 

o Average 
underestimation of 
peak dSST by 0.12 K 
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• Rerun POSH model to match 
data availability 

• Sample day in July, in Atlantic Ocean 

• Differences are function of 
o Foundation offset 

o Shift in onset of warming 

o Hourly/peak offset 
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Time Series of Diurnal 
Cycles 

• Areas where SST gradients 

are large are ambiguous 

o Advection (or large turbulent 

mixing) may inhibit formation of 

a classical diurnal warm layer  
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Bimonthly average dSST 
Jan/Feb Composite 

• Low level 
convergence 
near the ITCZ 
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Bimonthly average dSST 

• Transitional 
phase of 
monsoonal 
winds 

Mar/Apr Composite 
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• Mountain Barriers 

• Mediterranean Sea 

• Azores High 

Bimonthly average dSST 
Jul/Aug Composite 
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• Latent heat flux 
accounts for 2/3 of 
the total net 
flux*^.  

• Heating released 
to the atmosphere 
of this magnitude 
is considered 
non-negligible in 
terms of 
response*.   

• Supports theory 
that diurnal 
warming can 
affect convection 
in the tropics.   

 

Bimonthly average LHF 
difference 
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Flux Pt Sensitivity to 
Wind/SWR ranges 

• Flux value at dSST maximum 

o LHF differences expected to 
increase at dSST increases 

o At wind speed < 0.8 m/s, LHF 
difference change slows as 
winds decrease  

• Balance between humidity 
and wind. 

• Humidity change is less 
influential to LHF than wind 
speed.   

• Possible consequence largest 
dSSTs may not correspond to 
largest LHF deficit. 
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Max dSST sensitivity to 
Wind/Precip Ranges 

• Similar sensitivity study as Wind/Solar Radiation 
• Precipitation total 0.0 – 30 mm/hr 

• SWR peak is set at 500 W/m2 and 700 W/m2 for cloudy, rainy 
conditions 
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